Nonparametric Functional Data Analysis Theory and Practice /
Modern apparatuses allow us to collect samples of functional data, mainly curves but also images. On the other hand, nonparametric statistics produces useful tools for standard data exploration. This book links these two fields of modern statistics by explaining how functional data can be studied th...
Đã lưu trong:
| Những tác giả chính: | , |
|---|---|
| Tác giả của công ty: | |
| Định dạng: | Điện tử eBook |
| Ngôn ngữ: | English |
| Được phát hành: |
New York, NY :
Springer New York : Imprint: Springer,
2006.
|
| Phiên bản: | 1st ed. 2006. |
| Loạt: | Springer Series in Statistics,
|
| Những chủ đề: | |
| Truy cập trực tuyến: | https://doi.org/10.1007/0-387-36620-2 |
| Các nhãn: |
Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
|
Mục lục:
- Statistical Background for Nonparametric Statistics and Functional Data
- to Functional Nonparametric Statistics
- Some Functional Datasets and Associated Statistical Problematics
- What is a Well-Adapted Space for Functional Data?
- Local Weighting of Functional Variables
- Nonparametric Prediction from Functional Data
- Functional Nonparametric Prediction Methodologies
- Some Selected Asymptotics
- Computational Issues
- Nonparametric Classification of Functional Data
- Functional Nonparametric Supervised Classification
- Functional Nonparametric Unsupervised Classification
- Nonparametric Methods for Dependent Functional Data
- Mixing, Nonparametric and Functional Statistics
- Some Selected Asymptotics
- Application to Continuous Time Processes Prediction
- Conclusions
- Small Ball Probabilities and Semi-metrics
- Some Perspectives.



