Fourier Integral Operators

This volume is a useful introduction to the subject of Fourier integral operators and is based on the author's classic set of notes. Covering a range of topics from Hörmander’s exposition of the theory, Duistermaat approaches the subject from symplectic geometry and includes applications to hyp...

Descripció completa

Guardat en:
Dades bibliogràfiques
Autor principal: Duistermaat, J.J. (Autor, http://id.loc.gov/vocabulary/relators/aut)
Autor corporatiu: SpringerLink (Online service)
Format: Electrònic eBook
Idioma:English
Publicat: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 2011.
Edició:1st ed. 2011.
Periòdiques:Modern Birkhäuser Classics,
Matèries:
Accés en línia:https://doi.org/10.1007/978-0-8176-8108-1
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!
Taula de continguts:
  • Preface
  • 0. Introduction
  • 1. Preliminaries
  • 1.1 Distribution densities on manifolds
  • 1.2 The method of stationary phase
  • 1.3 The wave front set of a distribution
  • 2. Local Theory of Fourier Integrals
  • 2.1 Symbols
  • 2.2 Distributions defined by oscillatory integrals
  • 2.3 Oscillatory integrals with nondegenerate phase functions
  • 2.4 Fourier integral operators (local theory)
  • 2.5 Pseudodifferential operators in Rn
  • 3. Symplectic Differential Geometry
  • 3.1 Vector fields
  • 3.2 Differential forms
  • 3.3 The canonical 1- and 2-form T* (X)
  • 3.4 Symplectic vector spaces
  • 3.5 Symplectic differential geometry
  • 3.6 Lagrangian manifolds
  • 3.7 Conic Lagrangian manifolds
  • 3.8 Classical mechanics and variational calculus
  • 4. Global Theory of Fourier Integral Operators
  • 4.1 Invariant definition of the principal symbol
  • 4.2 Global theory of Fourier integral operators
  • 4.3 Products with vanishing principal symbol
  • 4.4 L2-continuity
  • 5. Applications
  • 5.1 The Cauchy problem for strictly hyperbolic differential operators with C-infinity coefficients
  • 5.2 Oscillatory asymptotic solutions. Caustics
  • References.