TY - GEN TY - GEN T1 - Molecular Gels Materials with Self-Assembled Fibrillar Networks A2 - Weiss, Richard G. A2 - Weiss, Richard G. A2 - Terech, Pierre. A2 - Terech, Pierre. LA - English PP - Dordrecht PB - Springer Netherlands : Imprint: Springer YR - 2006 ED - 1st ed. 2006. UL - http://discoverylib.upm.edu.my/discovery/Record/978-1-4020-3689-7 AB - Molecular gels and fibrillar networks – a comprehensive guide to experiment and theory Molecular Gels: Materials with Self-Assembled Fibrillar Networks provides a comprehensive treatise on gelators, especially low molecular-mass gelators (LMOGs), and the properties of their gels. The structures and modes of formation of the self-assembled fibrillar networks (SAFINs) that immobilize the liquid components of the gels are discussed experimentally and theoretically. The spectroscopic, rheological, and structural features of the different classes of LMOGs are also presented. Many examples of the application of the principal analytical techniques for investigation of molecular gels (including SANS, SAXS, WAXS, UV-vis absorption, fluorescence and CD spectroscopies, scanning electron, transmission electron and optical microscopies, and molecular modeling) are presented didactically and in-depth, as are several of the theories of the stages of aggregation of individual LMOG molecules leading to SAFINs. Several actual and potential applications of molecular gels in disparate fields (from silicate replication of nanostructures to art conservation) are described. Special emphasis is placed on perspectives for future developments. This book is an invaluable resource for researchers and practitioners either already researching self-assembly and soft matter or new to the area. Those who will find the book useful include chemists, engineers, spectroscopists, physicists, biologists, theoreticians, and materials scientists. Richard G. Weiss is Professor of Chemistry, Department of Chemistry, Georgetown University, Washington, DC, USA. Pierre Terech is Research Director, CNRS – Atomic Energy Center – Grenoble University, Grenoble, France. OP - 978 CN - QC176.8.A44 SN - 9781402036897 KW - Amorphous substances. KW - Complex fluids. KW - Organic chemistry. KW - Physical chemistry. KW - Condensed matter. KW - Phase transitions (Statistical physics). KW - Nanotechnology. KW - Soft and Granular Matter, Complex Fluids and Microfluidics. KW - Organic Chemistry. KW - Physical Chemistry. KW - Condensed Matter Physics. KW - Phase Transitions and Multiphase Systems. ER -