Hamiltonian Dynamical Systems and Applications

Physical laws are for the most part expressed in terms of differential equations, and natural classes of these are in the form of conservation laws or of problems of the calculus of variations for an action functional. These problems can generally be posed as Hamiltonian systems, whether dynamical s...

תיאור מלא

שמור ב:
מידע ביבליוגרפי
מחבר תאגידי: SpringerLink (Online service)
מחברים אחרים: Craig, Walter. (Editor, http://id.loc.gov/vocabulary/relators/edt)
פורמט: אלקטרוני ספר אלקטרוני
שפה:English
יצא לאור: Dordrecht : Springer Netherlands : Imprint: Springer, 2008.
מהדורה:1st ed. 2008.
סדרה:NATO Science for Peace and Security Series B: Physics and Biophysics,
נושאים:
גישה מקוונת:https://doi.org/10.1007/978-1-4020-6964-2
תגים: הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!
תוכן הענינים:
  • Some aspects of finite-dimensional Hamiltonian dynamics
  • Four lectures on the N-body problem
  • Averaging method and adiabatic invariants
  • Transformation theory of Hamiltonian PDE and the problem of water waves
  • Three theorems on perturbed KdV
  • Groups and topology in the Euler hydrodynamics and KdV
  • Infinite dimensional dynamical systems and the Navier–Stokes equation
  • Hamiltonian systems and optimal control
  • KAM theory with applications to Hamiltonian partial differential equations
  • Four lectures on KAM for the non-linear Schrödinger equation
  • A Birkhoff normal form theorem for some semilinear PDEs
  • Normal form of holomorphic dynamical systems
  • Geometric approaches to the problem of instability in Hamiltonian systems. An informal presentation
  • Variational methods for the problem of Arnold diffusion
  • The calculus of variations and the forced pendulum
  • Variational methods for Hamiltonian PDEs
  • Spectral gaps of potentials in weighted Sobolev spaces
  • On the well-posedness of the periodic KdV equation in high regularity classes.