Harmonic Analysis on Symmetric Spaces—Euclidean Space, the Sphere, and the Poincaré Upper Half-Plane
This unique text is an introduction to harmonic analysis on the simplest symmetric spaces, namely Euclidean space, the sphere, and the Poincaré upper half plane. This book is intended for beginning graduate students in mathematics or researchers in physics or engineering. Written with an informal st...
Saved in:
| 主要作者: | |
|---|---|
| 企業作者: | |
| 格式: | 電子 電子書 |
| 語言: | English |
| 出版: |
New York, NY :
Springer New York : Imprint: Springer,
2013.
|
| 版: | 2nd ed. 2013. |
| 主題: | |
| 在線閱讀: | https://doi.org/10.1007/978-1-4614-7972-7 |
| 標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
書本目錄:
- Chapter 1 Flat Space. Fourier Analysis on R^m.
- 1.1 Distributions or Generalized Functions
- 1.2 Fourier Integrals
- 1.3 Fourier Series and the Poisson Summation Formula
- 1.4 Mellin Transforms, Epstein and Dedekind Zeta Functions
- 1.5 Finite Symmetric Spaces, Wavelets, Quasicrystals, Weyl’s Criterion for Uniform Distribution
- Chapter 2 A Compact Symmetric Space
- The Sphere
- 2.1 Fourier Analysis on the Sphere
- 2.2 O(3) and R^3. The Radon Transform
- Chapter 3 The Poincaré Upper Half-Plane
- 3.1 Hyperbolic Geometry
- 3.2 Harmonic Analysis on H
- 3.3 Fundamental Domains for Discrete Subgroups Γ of G = SL(2, R)
- 3.4 Modular of Automorphic Forms
- Classical
- 3.5 Automorphic Forms
- Not So Classical
- Maass Waveforms
- 3.6 Modular Forms and Dirichlet Series. Hecke Theory and Generalizations
- References
- Index.



