Stochastic Calculus for Fractional Brownian Motion and Applications
Fractional Brownian motion (fBm) has been widely used to model a number of phenomena in diverse fields from biology to finance. This huge range of potential applications makes fBm an interesting object of study. fBm represents a natural one-parameter extension of classical Brownian motion therefore...
Сохранить в:
Главные авторы: | Biagini, Francesca. (Автор, http://id.loc.gov/vocabulary/relators/aut), Hu, Yaozhong. (http://id.loc.gov/vocabulary/relators/aut), Øksendal, Bernt. (http://id.loc.gov/vocabulary/relators/aut), Zhang, Tusheng. (http://id.loc.gov/vocabulary/relators/aut) |
---|---|
Соавтор: | SpringerLink (Online service) |
Формат: | Электронный ресурс eКнига |
Язык: | English |
Опубликовано: |
London :
Springer London : Imprint: Springer,
2008.
|
Редактирование: | 1st ed. 2008. |
Серии: | Probability and Its Applications,
|
Предметы: | |
Online-ссылка: | https://doi.org/10.1007/978-1-84628-797-8 |
Метки: |
Добавить метку
Нет меток, Требуется 1-ая метка записи!
|
Схожие документы
-
Selected Aspects of Fractional Brownian Motion
по: Nourdin, Ivan., et al.
Опубликовано: (2012) -
Aspects of Brownian Motion
по: Mansuy, Roger., et al.
Опубликовано: (2008) -
Markov Processes, Brownian Motion, and Time Symmetry
по: Chung, Kai Lai., et al.
Опубликовано: (2005) -
Local Times and Excursion Theory for Brownian Motion A Tale of Wiener and Itô Measures /
по: Yen, Ju-Yi., et al.
Опубликовано: (2013) -
Brownian Dynamics at Boundaries and Interfaces In Physics, Chemistry, and Biology /
по: Schuss, Zeev., et al.
Опубликовано: (2013)