Critical Phenomena in Loop Models
When close to a continuous phase transition, many physical systems can usefully be mapped to ensembles of fluctuating loops, which might represent for example polymer rings, or line defects in a lattice magnet, or worldlines of quantum particles. 'Loop models' provide a unifying geometric...
Сохранить в:
| Главный автор: | |
|---|---|
| Соавтор: | |
| Формат: | Электронный ресурс eКнига |
| Язык: | English |
| Опубликовано: |
Cham :
Springer International Publishing : Imprint: Springer,
2015.
|
| Редактирование: | 1st ed. 2015. |
| Серии: | Springer Theses, Recognizing Outstanding Ph.D. Research,
|
| Предметы: | |
| Online-ссылка: | https://doi.org/10.1007/978-3-319-06407-9 |
| Метки: |
Добавить метку
Нет меток, Требуется 1-ая метка записи!
|
Оглавление:
- Introduction
- Completely Packed Loop Models
- Topological Terms, Quantum Magnets and Deconfined Criticality
- The Statistics of Vortex Lines
- Loop Models with Crossings in 2D
- Polymer Collapse
- Outlook
- Appendix A Potts domain walls and CP^{n-1}
- Appendix B Phases for Hedgehogs & Vortices.



