Lectures on Symplectic Geometry

The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures,...

תיאור מלא

שמור ב:
מידע ביבליוגרפי
מחבר ראשי: Cannas da Silva, Ana. (Author, http://id.loc.gov/vocabulary/relators/aut)
מחבר תאגידי: SpringerLink (Online service)
פורמט: אלקטרוני ספר אלקטרוני
שפה:English
יצא לאור: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2008.
מהדורה:1st ed. 2008.
סדרה:Lecture Notes in Mathematics, 1764
נושאים:
גישה מקוונת:https://doi.org/10.1007/978-3-540-45330-7
תגים: הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!
LEADER 04015nam a22004935i 4500
001 978-3-540-45330-7
003 DE-He213
005 20200703065254.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540453307  |9 978-3-540-45330-7 
024 7 |a 10.1007/978-3-540-45330-7  |2 doi 
050 4 |a QA641-670 
072 7 |a PBMP  |2 bicssc 
072 7 |a MAT012030  |2 bisacsh 
072 7 |a PBMP  |2 thema 
082 0 4 |a 516.36  |2 23 
100 1 |a Cannas da Silva, Ana.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Lectures on Symplectic Geometry  |h [electronic resource] /  |c by Ana Cannas da Silva. 
250 |a 1st ed. 2008. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2008. 
300 |a XII, 220 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1764 
505 0 |a Symplectic Manifolds -- Symplectic Forms -- Symplectic Form on the Cotangent Bundle -- Symplectomorphisms -- Lagrangian Submanifolds -- Generating Functions -- Recurrence -- Local Forms -- Preparation for the Local Theory -- Moser Theorems -- Darboux-Moser-Weinstein Theory -- Weinstein Tubular Neighborhood Theorem -- Contact Manifolds -- Contact Forms -- Contact Dynamics -- Compatible Almost Complex Structures -- Almost Complex Structures -- Compatible Triples -- Dolbeault Theory -- Kähler Manifolds -- Complex Manifolds -- Kähler Forms -- Compact Kähler Manifolds -- Hamiltonian Mechanics -- Hamiltonian Vector Fields -- Variational Principles -- Legendre Transform -- Moment Maps -- Actions -- Hamiltonian Actions -- Symplectic Reduction -- The Marsden-Weinstein-Meyer Theorem -- Reduction -- Moment Maps Revisited -- Moment Map in Gauge Theory -- Existence and Uniqueness of Moment Maps -- Convexity -- Symplectic Toric Manifolds -- Classification of Symplectic Toric Manifolds -- Delzant Construction -- Duistermaat-Heckman Theorems. 
520 |a The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved. 
650 0 |a Differential geometry. 
650 0 |a Partial differential equations. 
650 1 4 |a Differential Geometry.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M21022 
650 2 4 |a Partial Differential Equations.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12155 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540862543 
776 0 8 |i Printed edition:  |z 9783540421955 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1764 
856 4 0 |u https://doi.org/10.1007/978-3-540-45330-7 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)