Hamiltonian Reduction by Stages
In this volume readers will find for the first time a detailed account of the theory of symplectic reduction by stages, along with numerous illustrations of the theory. Special emphasis is given to group extensions, including a detailed discussion of the Euclidean group, the oscillator group, the Bo...
محفوظ في:
المؤلفون الرئيسيون: | , , , , |
---|---|
مؤلف مشترك: | |
التنسيق: | الكتروني كتاب الكتروني |
اللغة: | English |
منشور في: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2007.
|
الطبعة: | 1st ed. 2007. |
سلاسل: | Lecture Notes in Mathematics,
1913 |
الموضوعات: | |
الوصول للمادة أونلاين: | https://doi.org/10.1007/978-3-540-72470-4 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
جدول المحتويات:
- Background and the Problem Setting
- Symplectic Reduction
- Cotangent Bundle Reduction
- The Problem Setting
- Regular Symplectic Reduction by Stages
- Commuting Reduction and Semidirect Product Theory
- Regular Reduction by Stages
- Group Extensions and the Stages Hypothesis
- Magnetic Cotangent Bundle Reduction
- Stages and Coadjoint Orbits of Central Extensions
- Examples
- Stages and Semidirect Products with Cocycles
- Reduction by Stages via Symplectic Distributions
- Reduction by Stages with Topological Conditions
- Optimal Reduction and Singular Reduction by Stages, by Juan-Pablo Ortega
- The Optimal Momentum Map and Point Reduction
- Optimal Orbit Reduction
- Optimal Reduction by Stages.