TY - GEN TY - GEN T1 - Notes on Coxeter Transformations and the McKay Correspondence T2 - Springer Monographs in Mathematics, A1 - Stekolshchik, Rafael. LA - English PP - Berlin, Heidelberg PB - Springer Berlin Heidelberg : Imprint: Springer YR - 2008 ED - 1st ed. 2008. UL - http://discoverylib.upm.edu.my/discovery/Record/978-3-540-77399-3 AB - One of the beautiful results in the representation theory of the finite groups is McKay's theorem on a correspondence between representations of the binary polyhedral group of SU(2) and vertices of an extended simply-laced Dynkin diagram. The Coxeter transformation is the main tool in the proof of the McKay correspondence, and is closely interrelated with the Cartan matrix and Poincaré series. The Coxeter functors constructed by Bernstein, Gelfand and Ponomarev plays a distinguished role in the representation theory of quivers. On these pages, the ideas and formulas due to J. N. Bernstein, I. M. Gelfand and V. A. Ponomarev, H.S.M. Coxeter, V. Dlab and C.M. Ringel, V. Kac, J. McKay, T.A. Springer, B. Kostant, P. Slodowy, R. Steinberg, W. Ebeling and several other authors, as well as the author and his colleagues from Subbotin's seminar, are presented in detail. Several proofs seem to be new. OP - 240 CN - QA150-272 SN - 9783540773993 KW - Algebra. KW - Functional analysis. KW - Commutative algebra. KW - Commutative rings. KW - Topological groups. KW - Lie groups. KW - Group theory. KW - Functional Analysis. KW - Commutative Rings and Algebras. KW - Topological Groups, Lie Groups. KW - Group Theory and Generalizations. ER -