Hypergeometric Orthogonal Polynomials and Their q-Analogues

The very classical orthogonal polynomials named after Hermite, Laguerre and Jacobi, satisfy many common properties. For instance, they satisfy a second-order differential equation with polynomial coefficients and they can be expressed in terms of a hypergeometric function. Replacing the differential...

Fuld beskrivelse

Saved in:
Bibliografiske detaljer
Main Authors: Koekoek, Roelof. (Author, http://id.loc.gov/vocabulary/relators/aut), Lesky, Peter A. (http://id.loc.gov/vocabulary/relators/aut), Swarttouw, René F. (http://id.loc.gov/vocabulary/relators/aut)
Institution som forfatter: SpringerLink (Online service)
Format: Electronisk eBog
Sprog:English
Udgivet: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2010.
Udgivelse:1st ed. 2010.
Serier:Springer Monographs in Mathematics,
Fag:
Online adgang:https://doi.org/10.1007/978-3-642-05014-5
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!
Indholdsfortegnelse:
  • Definitions and Miscellaneous Formulas
  • Classical orthogonal polynomials
  • Orthogonal Polynomial Solutions of Differential Equations
  • Orthogonal Polynomial Solutions of Real Difference Equations
  • Orthogonal Polynomial Solutions of Complex Difference Equations
  • Orthogonal Polynomial Solutions in x(x+u) of Real Difference Equations
  • Orthogonal Polynomial Solutions in z(z+u) of Complex Difference Equations
  • Hypergeometric Orthogonal Polynomials
  • Polynomial Solutions of Eigenvalue Problems
  • Classical q-orthogonal polynomials
  • Orthogonal Polynomial Solutions of q-Difference Equations
  • Orthogonal Polynomial Solutions in q?x of q-Difference Equations
  • Orthogonal Polynomial Solutions in q?x+uqx of Real.