Hypergeometric Orthogonal Polynomials and Their q-Analogues

The very classical orthogonal polynomials named after Hermite, Laguerre and Jacobi, satisfy many common properties. For instance, they satisfy a second-order differential equation with polynomial coefficients and they can be expressed in terms of a hypergeometric function. Replacing the differential...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Koekoek, Roelof. (Auteur, http://id.loc.gov/vocabulary/relators/aut), Lesky, Peter A. (http://id.loc.gov/vocabulary/relators/aut), Swarttouw, René F. (http://id.loc.gov/vocabulary/relators/aut)
Collectivité auteur: SpringerLink (Online service)
Format: Électronique eBook
Langue:English
Publié: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2010.
Édition:1st ed. 2010.
Collection:Springer Monographs in Mathematics,
Sujets:
Accès en ligne:https://doi.org/10.1007/978-3-642-05014-5
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Table des matières:
  • Definitions and Miscellaneous Formulas
  • Classical orthogonal polynomials
  • Orthogonal Polynomial Solutions of Differential Equations
  • Orthogonal Polynomial Solutions of Real Difference Equations
  • Orthogonal Polynomial Solutions of Complex Difference Equations
  • Orthogonal Polynomial Solutions in x(x+u) of Real Difference Equations
  • Orthogonal Polynomial Solutions in z(z+u) of Complex Difference Equations
  • Hypergeometric Orthogonal Polynomials
  • Polynomial Solutions of Eigenvalue Problems
  • Classical q-orthogonal polynomials
  • Orthogonal Polynomial Solutions of q-Difference Equations
  • Orthogonal Polynomial Solutions in q?x of q-Difference Equations
  • Orthogonal Polynomial Solutions in q?x+uqx of Real.