Hypergeometric Orthogonal Polynomials and Their q-Analogues
The very classical orthogonal polynomials named after Hermite, Laguerre and Jacobi, satisfy many common properties. For instance, they satisfy a second-order differential equation with polynomial coefficients and they can be expressed in terms of a hypergeometric function. Replacing the differential...
Đã lưu trong:
| Những tác giả chính: | , , |
|---|---|
| Tác giả của công ty: | |
| Định dạng: | Điện tử eBook |
| Ngôn ngữ: | English |
| Được phát hành: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2010.
|
| Phiên bản: | 1st ed. 2010. |
| Loạt: | Springer Monographs in Mathematics,
|
| Những chủ đề: | |
| Truy cập trực tuyến: | https://doi.org/10.1007/978-3-642-05014-5 |
| Các nhãn: |
Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
|
Mục lục:
- Definitions and Miscellaneous Formulas
- Classical orthogonal polynomials
- Orthogonal Polynomial Solutions of Differential Equations
- Orthogonal Polynomial Solutions of Real Difference Equations
- Orthogonal Polynomial Solutions of Complex Difference Equations
- Orthogonal Polynomial Solutions in x(x+u) of Real Difference Equations
- Orthogonal Polynomial Solutions in z(z+u) of Complex Difference Equations
- Hypergeometric Orthogonal Polynomials
- Polynomial Solutions of Eigenvalue Problems
- Classical q-orthogonal polynomials
- Orthogonal Polynomial Solutions of q-Difference Equations
- Orthogonal Polynomial Solutions in q?x of q-Difference Equations
- Orthogonal Polynomial Solutions in q?x+uqx of Real.



