Qualitative Spatial Abstraction in Reinforcement Learning

Reinforcement learning has developed as a successful learning approach for domains that are not fully understood and that are too complex to be described in closed form. However, reinforcement learning does not scale well to large and continuous problems. Furthermore, acquired knowledge specific to...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Frommberger, Lutz. (مؤلف, http://id.loc.gov/vocabulary/relators/aut)
مؤلف مشترك: SpringerLink (Online service)
التنسيق: الكتروني كتاب الكتروني
اللغة:English
منشور في: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2010.
الطبعة:1st ed. 2010.
سلاسل:Cognitive Technologies,
الموضوعات:
الوصول للمادة أونلاين:https://doi.org/10.1007/978-3-642-16590-0
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
جدول المحتويات:
  • Foundations of Reinforcement Learning
  • Abstraction and Knowledge Transfer in Reinforcement Learning
  • Qualitative State Space Abstraction
  • Generalization and Transfer Learning with Qualitative Spatial Abstraction
  • RLPR – An Aspectualizable State Space Representation
  • Empirical Evaluation
  • Summary and Outlook.