Qualitative Spatial Abstraction in Reinforcement Learning

Reinforcement learning has developed as a successful learning approach for domains that are not fully understood and that are too complex to be described in closed form. However, reinforcement learning does not scale well to large and continuous problems. Furthermore, acquired knowledge specific to...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor Principal: Frommberger, Lutz. (Autor, http://id.loc.gov/vocabulary/relators/aut)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Lenguaje:English
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2010.
Edición:1st ed. 2010.
Series:Cognitive Technologies,
Materias:
Acceso en línea:https://doi.org/10.1007/978-3-642-16590-0
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Tabla de Contenidos:
  • Foundations of Reinforcement Learning
  • Abstraction and Knowledge Transfer in Reinforcement Learning
  • Qualitative State Space Abstraction
  • Generalization and Transfer Learning with Qualitative Spatial Abstraction
  • RLPR – An Aspectualizable State Space Representation
  • Empirical Evaluation
  • Summary and Outlook.