Qualitative Spatial Abstraction in Reinforcement Learning

Reinforcement learning has developed as a successful learning approach for domains that are not fully understood and that are too complex to be described in closed form. However, reinforcement learning does not scale well to large and continuous problems. Furthermore, acquired knowledge specific to...

Szczegółowa specyfikacja

Zapisane w:
Opis bibliograficzny
1. autor: Frommberger, Lutz. (Autor, http://id.loc.gov/vocabulary/relators/aut)
Korporacja: SpringerLink (Online service)
Format: Elektroniczne E-book
Język:English
Wydane: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2010.
Wydanie:1st ed. 2010.
Seria:Cognitive Technologies,
Hasła przedmiotowe:
Dostęp online:https://doi.org/10.1007/978-3-642-16590-0
Etykiety: Dodaj etykietę
Nie ma etykietki, Dołącz pierwszą etykiete!
Spis treści:
  • Foundations of Reinforcement Learning
  • Abstraction and Knowledge Transfer in Reinforcement Learning
  • Qualitative State Space Abstraction
  • Generalization and Transfer Learning with Qualitative Spatial Abstraction
  • RLPR – An Aspectualizable State Space Representation
  • Empirical Evaluation
  • Summary and Outlook.