Qualitative Spatial Abstraction in Reinforcement Learning
Reinforcement learning has developed as a successful learning approach for domains that are not fully understood and that are too complex to be described in closed form. However, reinforcement learning does not scale well to large and continuous problems. Furthermore, acquired knowledge specific to...
Сохранить в:
| Главный автор: | |
|---|---|
| Соавтор: | |
| Формат: | Электронный ресурс eКнига |
| Язык: | English |
| Опубликовано: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2010.
|
| Редактирование: | 1st ed. 2010. |
| Серии: | Cognitive Technologies,
|
| Предметы: | |
| Online-ссылка: | https://doi.org/10.1007/978-3-642-16590-0 |
| Метки: |
Добавить метку
Нет меток, Требуется 1-ая метка записи!
|
Оглавление:
- Foundations of Reinforcement Learning
- Abstraction and Knowledge Transfer in Reinforcement Learning
- Qualitative State Space Abstraction
- Generalization and Transfer Learning with Qualitative Spatial Abstraction
- RLPR – An Aspectualizable State Space Representation
- Empirical Evaluation
- Summary and Outlook.



