A Rapid Introduction to Adaptive Filtering

In this book, the authors provide insights into the basics of adaptive filtering, which are particularly useful for students taking their first steps into this field. They start by studying the problem of minimum mean-square-error filtering, i.e., Wiener filtering. Then, they analyze iterative metho...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autoři: Vega, Leonardo Rey. (Autor, http://id.loc.gov/vocabulary/relators/aut), Rey, Hernan. (http://id.loc.gov/vocabulary/relators/aut)
Korporativní autor: SpringerLink (Online service)
Médium: Elektronický zdroj E-kniha
Jazyk:English
Vydáno: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Vydání:1st ed. 2013.
Edice:SpringerBriefs in Electrical and Computer Engineering,
Témata:
On-line přístup:https://doi.org/10.1007/978-3-642-30299-2
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo otaguje tento záznam!
LEADER 03739nam a22005655i 4500
001 978-3-642-30299-2
003 DE-He213
005 20200704174638.0
007 cr nn 008mamaa
008 120803s2013 gw | s |||| 0|eng d
020 |a 9783642302992  |9 978-3-642-30299-2 
024 7 |a 10.1007/978-3-642-30299-2  |2 doi 
050 4 |a TK5102.9 
050 4 |a TA1637-1638 
072 7 |a TTBM  |2 bicssc 
072 7 |a TEC008000  |2 bisacsh 
072 7 |a TTBM  |2 thema 
072 7 |a UYS  |2 thema 
082 0 4 |a 621.382  |2 23 
100 1 |a Vega, Leonardo Rey.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 2 |a A Rapid Introduction to Adaptive Filtering  |h [electronic resource] /  |c by Leonardo Rey Vega, Hernan Rey. 
250 |a 1st ed. 2013. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a XII, 122 p. 23 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Electrical and Computer Engineering,  |x 2191-8112 
505 0 |a Wiener Filtering and examples -- Steepest descent procedure -- Stochastic gradient adaptive filtering: LMS (Least Mean Squares), NLMS (Normalized Mean Squares) -- Sign-error algorithm, APA (Affine Projection Algorithms) -- Convergence results -- Applications -- LS (Least Squares) and RLS (Recursive Least Squares) -- Computational complexity and fast implementations -- Applications. 
520 |a In this book, the authors provide insights into the basics of adaptive filtering, which are particularly useful for students taking their first steps into this field. They start by studying the problem of minimum mean-square-error filtering, i.e., Wiener filtering. Then, they analyze iterative methods for solving the optimization problem, e.g., the Method of Steepest Descent. By proposing stochastic approximations, several basic adaptive algorithms are derived, including Least Mean Squares (LMS), Normalized Least Mean Squares (NLMS) and Sign-error algorithms. The authors provide a general framework to study the stability and steady-state performance of these algorithms. The affine Projection Algorithm (APA) which provides faster convergence at the expense of computational complexity (although fast implementations can be used) is also presented. In addition, the Least Squares (LS) method and its recursive version (RLS), including fast implementations are discussed. The book closes with the discussion of several topics of interest in the adaptive filtering field. 
650 0 |a Signal processing. 
650 0 |a Image processing. 
650 0 |a Speech processing systems. 
650 0 |a Artificial intelligence. 
650 0 |a Computational intelligence. 
650 1 4 |a Signal, Image and Speech Processing.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T24051 
650 2 4 |a Artificial Intelligence.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I21000 
650 2 4 |a Computational Intelligence.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T11014 
700 1 |a Rey, Hernan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642303005 
776 0 8 |i Printed edition:  |z 9783642302985 
830 0 |a SpringerBriefs in Electrical and Computer Engineering,  |x 2191-8112 
856 4 0 |u https://doi.org/10.1007/978-3-642-30299-2 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)