Optimised Crossover Genetic Algorithms for Combinatorial Optimisation Problems
A Genetic Algorithm is successful in generating near -optimal solutions if it is able to produce o®spring during crossover that is better than the parent solutions. Most of the current methods of crossover determine o®spring by using a stochastic approach and without reference to the objective func...
Enregistré dans:
| Auteur principal: | Nazif, Habibeh |
|---|---|
| Format: | Thèse |
| Langue: | English |
| Publié: |
2010
|
| Accès en ligne: | http://ethesis.upm.edu.my/id/eprint/6001/1/FS_2010_53.pdf |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Optimised Crossover Genetic Algorithms for Combinatorial Optimisation Problems
par: Nazif, Habibeh
Publié: (2010) -
Optimised crossover genetic algorithms for combinatorial optimisation problems /
par: Nazif, Habibeh. -
Genetic algorithms with optimised crossover operator
par: Nazif, Habibeh, et autres
Publié: (2009) -
Optimised crossover genetic algorithm for capacitated vehicle routing problem
par: Nazif, Habibeh, et autres
Publié: (2012) -
Fuzzy genetic algorithms for combinatorial optimisation problems
par: Varnamkhasti, Mohammad Jalali
Publié: (2012)
