Optimised Crossover Genetic Algorithms for Combinatorial Optimisation Problems
A Genetic Algorithm is successful in generating near -optimal solutions if it is able to produce o®spring during crossover that is better than the parent solutions. Most of the current methods of crossover determine o®spring by using a stochastic approach and without reference to the objective func...
保存先:
| 第一著者: | Nazif, Habibeh |
|---|---|
| フォーマット: | 学位論文 |
| 言語: | English |
| 出版事項: |
2010
|
| オンライン・アクセス: | http://ethesis.upm.edu.my/id/eprint/6001/1/FS_2010_53.pdf |
| タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Optimised Crossover Genetic Algorithms for Combinatorial Optimisation Problems
著者:: Nazif, Habibeh
出版事項: (2010) -
Optimised crossover genetic algorithms for combinatorial optimisation problems /
著者:: Nazif, Habibeh. -
Genetic algorithms with optimised crossover operator
著者:: Nazif, Habibeh, 等
出版事項: (2009) -
Optimised crossover genetic algorithm for capacitated vehicle routing problem
著者:: Nazif, Habibeh, 等
出版事項: (2012) -
Fuzzy genetic algorithms for combinatorial optimisation problems
著者:: Varnamkhasti, Mohammad Jalali
出版事項: (2012)
