Optimised Crossover Genetic Algorithms for Combinatorial Optimisation Problems
A Genetic Algorithm is successful in generating near -optimal solutions if it is able to produce o®spring during crossover that is better than the parent solutions. Most of the current methods of crossover determine o®spring by using a stochastic approach and without reference to the objective func...
Сохранить в:
| Главный автор: | Nazif, Habibeh |
|---|---|
| Формат: | Thesis |
| Язык: | English |
| Опубликовано: |
2010
|
| Online-ссылка: | http://ethesis.upm.edu.my/id/eprint/6001/1/FS_2010_53.pdf |
| Метки: |
Добавить метку
Нет меток, Требуется 1-ая метка записи!
|
Схожие документы
-
Optimised Crossover Genetic Algorithms for Combinatorial Optimisation Problems
по: Nazif, Habibeh
Опубликовано: (2010) -
Optimised crossover genetic algorithms for combinatorial optimisation problems /
по: Nazif, Habibeh. -
Genetic algorithms with optimised crossover operator
по: Nazif, Habibeh, et al.
Опубликовано: (2009) -
Optimised crossover genetic algorithm for capacitated vehicle routing problem
по: Nazif, Habibeh, et al.
Опубликовано: (2012) -
Fuzzy genetic algorithms for combinatorial optimisation problems
по: Varnamkhasti, Mohammad Jalali
Опубликовано: (2012)
