Prediction of starch content in meatballs using near infrared spectroscopy (NIRS)

Meatballs are a popular food in Asian countries. A good quality consists of low starch. In this study, the quality of meatballs was evaluated by starch content using short and long-wavelength near infrared spectroscopy (NIRS). The result found that long-wavelength NIRS can predict starch contents in...

Mô tả đầy đủ

Đã lưu trong:
Chi tiết về thư mục
Những tác giả chính: Vichasilp, C., Kawano, S.
Định dạng: Journal Contribution
Ngôn ngữ:English
Được phát hành: 2017
Những chủ đề:
Truy cập trực tuyến:http://agris.upm.edu.my:8080/dspace/handle/0/12624
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
Miêu tả
Tóm tắt:Meatballs are a popular food in Asian countries. A good quality consists of low starch. In this study, the quality of meatballs was evaluated by starch content using short and long-wavelength near infrared spectroscopy (NIRS). The result found that long-wavelength NIRS can predict starch contents in all kinds of meatballs. The model of beef meatballs showed a high coefficient of multiple determination of validation set (R2-val) of 0.97 and a low standard error of cross-validation (SECV) of 2.64%; the chicken meatballs model had an R2-val of 0.97 and a SECV of 2.63%; and the pork meatballs model had an R2-val of 0.98 and a SECV of 2.37%. In addition, a universal model was created by combining the spectra of all meatballs. The universal model had an coefficient of multiple determination of calibration set (R2-cal) of 0.98, standard error of calibration (SEC) of 2.22%, R2-val of 0.97, standard error of prediction (SEP) of 2.67% and Bias of 0.05%. The results indicated that NIRS can predict starch contents with high accuracy and could apply for quality classification via rapid analysis.