Prediction of course grades in computer science higher education program via a combination of loss functions in lstm model
In the realm of education, the timely identification of potential challenges, such as learning difficulties leading to dropout risks, and the facilitation of personalized learning, emphasizes the crucial importance of early grade prediction. This study seeks to connect predictive modeling with edu...
Salvato in:
| Autori principali: | Ghazvini, Anahita, Mohd Sharef, Nurfadhlina, Sidi, Fatimah |
|---|---|
| Natura: | Articolo |
| Lingua: | English |
| Pubblicazione: |
Institute of Electrical and Electronics Engineers
2024
|
| Accesso online: | http://psasir.upm.edu.my/id/eprint/105763/1/Prediction_of_Course_Grades_in_Computer_Science_Higher_Education_Program_via_a_Combination_of_Loss_Functions_in_LSTM_Model.pdf |
| Tags: |
Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne! !
|
Documenti analoghi
-
Prediction of dengue cases using the attention-based long short-term memory (LSTM) approach
di: Majeed, Mokhalad A., et al.
Pubblicazione: (2023) -
A concentration prediction-based crop digital twin
using nutrient co-existence and composition in
regression algorithms
di: Ghazvini, Anahita, et al.
Pubblicazione: (2024) -
Higher grade physics /
di: Burns, Stuart G.
Pubblicazione: (1974) -
Higher grade physics
di: Burns
Pubblicazione: (1974) -
Assigning course grades /
di: Frishbie, David A.
Pubblicazione: (1994)
