Flock optimization algorithm-based deep learning model for diabetic disease detection improvement
Worldwide, 422 million people suffer from diabetic disease, and 1.5 million die yearly. Diabetes is a threat to people who still fail to cure or maintain it, so it is challenging to predict this disease accurately. The existing systems face data over-fitting issues, convergence problems, non-converg...
Sparad:
| Huvudupphovsmän: | Balasubramaniyan, Divager, Husin, Nor Azura, Mustapha, Norwati, Mohd Sharef, Nurfadhlina, Mohd Aris, Teh Noranis |
|---|---|
| Materialtyp: | Artikel |
| Publicerad: |
Science Publication
2024
|
| Taggar: |
Lägg till en tagg
Inga taggar, Lägg till första taggen!
|
Liknande verk
-
Flock optimization induced deep learning for improved diabetes disease classification
av: Balasubramaniyan, Divager, et al.
Publicerad: (2023) -
A proposed approach for diabetes diagnosis using neuro-fuzzy technique
av: Alasaady, Maher Talal, et al.
Publicerad: (2022) -
Parallel implementation on improved error signal of backpropagation algorithm
av: Mohd Aris, Teh Noranis
Publicerad: (2001) -
Parallel Implementation on Improved Error Signal of Backpropagation Algorithm
av: Mohd. Aris, Teh Noranis
Publicerad: (2001) -
Parallel implementation on improved error signal of backpropagation algorithm /
av: Teh Noranis Mohd. Aris.
