Flock optimization algorithm-based deep learning model for diabetic disease detection improvement
Worldwide, 422 million people suffer from diabetic disease, and 1.5 million die yearly. Diabetes is a threat to people who still fail to cure or maintain it, so it is challenging to predict this disease accurately. The existing systems face data over-fitting issues, convergence problems, non-converg...
Kaydedildi:
| Asıl Yazarlar: | Balasubramaniyan, Divager, Husin, Nor Azura, Mustapha, Norwati, Mohd Sharef, Nurfadhlina, Mohd Aris, Teh Noranis |
|---|---|
| Materyal Türü: | Makale |
| Baskı/Yayın Bilgisi: |
Science Publication
2024
|
| Etiketler: |
Etiketle
Etiket eklenmemiş, İlk siz ekleyin!
|
Benzer Materyaller
-
Flock optimization induced deep learning for improved diabetes disease classification
Yazar:: Balasubramaniyan, Divager, ve diğerleri
Baskı/Yayın Bilgisi: (2023) -
A proposed approach for diabetes diagnosis using neuro-fuzzy technique
Yazar:: Alasaady, Maher Talal, ve diğerleri
Baskı/Yayın Bilgisi: (2022) -
Parallel implementation on improved error signal of backpropagation algorithm
Yazar:: Mohd Aris, Teh Noranis
Baskı/Yayın Bilgisi: (2001) -
Parallel Implementation on Improved Error Signal of Backpropagation Algorithm
Yazar:: Mohd. Aris, Teh Noranis
Baskı/Yayın Bilgisi: (2001) -
Parallel implementation on improved error signal of backpropagation algorithm /
Yazar:: Teh Noranis Mohd. Aris.
