Improved stochastic gradient descent algorithm with mean-gradient adaptive stepsize for solving large-scale optimization problems

Stochastic gradient descent (SGD) is one of the most common algorithms used in solving large unconstrained optimization problems. It utilizes the concept of classical gradient descent method with modification on the gradient selection. SGD uses random or batch data sets to compute gradient in solvin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zulkifli, Munierah, Abd Rahmin, Nor Aliza, Wah, June Leong
Format: Artikel
Sprache:English
Veröffentlicht: Persatuan Sains Matematik Malaysia 2023
Online Zugang:http://psasir.upm.edu.my/id/eprint/110372/1/document%20%284%29.pdf
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!