Improved stochastic gradient descent algorithm with mean-gradient adaptive stepsize for solving large-scale optimization problems

Stochastic gradient descent (SGD) is one of the most common algorithms used in solving large unconstrained optimization problems. It utilizes the concept of classical gradient descent method with modification on the gradient selection. SGD uses random or batch data sets to compute gradient in solvin...

Deskribapen osoa

Gorde:
Xehetasun bibliografikoak
Egile Nagusiak: Zulkifli, Munierah, Abd Rahmin, Nor Aliza, Wah, June Leong
Formatua: Artikulua
Hizkuntza:English
Argitaratua: Persatuan Sains Matematik Malaysia 2023
Sarrera elektronikoa:http://psasir.upm.edu.my/id/eprint/110372/1/document%20%284%29.pdf
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!