Improved stochastic gradient descent algorithm with mean-gradient adaptive stepsize for solving large-scale optimization problems

Stochastic gradient descent (SGD) is one of the most common algorithms used in solving large unconstrained optimization problems. It utilizes the concept of classical gradient descent method with modification on the gradient selection. SGD uses random or batch data sets to compute gradient in solvin...

Täydet tiedot

Tallennettuna:
Bibliografiset tiedot
Päätekijät: Zulkifli, Munierah, Abd Rahmin, Nor Aliza, Wah, June Leong
Aineistotyyppi: Artikkeli
Kieli:English
Julkaistu: Persatuan Sains Matematik Malaysia 2023
Linkit:http://psasir.upm.edu.my/id/eprint/110372/1/document%20%284%29.pdf
Tagit: Lisää tagi
Ei tageja, Lisää ensimmäinen tagi!