Improved stochastic gradient descent algorithm with mean-gradient adaptive stepsize for solving large-scale optimization problems

Stochastic gradient descent (SGD) is one of the most common algorithms used in solving large unconstrained optimization problems. It utilizes the concept of classical gradient descent method with modification on the gradient selection. SGD uses random or batch data sets to compute gradient in solvin...

Full beskrivning

Sparad:
Bibliografiska uppgifter
Huvudupphovsmän: Zulkifli, Munierah, Abd Rahmin, Nor Aliza, Wah, June Leong
Materialtyp: Artikel
Språk:English
Publicerad: Persatuan Sains Matematik Malaysia 2023
Länkar:http://psasir.upm.edu.my/id/eprint/110372/1/document%20%284%29.pdf
Taggar: Lägg till en tagg
Inga taggar, Lägg till första taggen!