Two-level compact implicit schemes for three-dimensional parabolic problems.
We derive a class of two-level high-order implicit finite difference schemes for solving three-dimensional parabolic problems with mixed derivatives. The schemes are fourth-order accurate in space and second- or lower-order accurate in time depending on the choice of a weighted average parameter μ....
Saved in:
Main Authors: | Karaa, Samir, Othman, Mohamed |
---|---|
Formáid: | Article |
Teanga: | English English |
Foilsithe: |
Elsevier
2009
|
Ábhair: | |
Rochtain Ar Líne: | http://psasir.upm.edu.my/id/eprint/17503/1/Two.pdf |
Clibeanna: |
Cuir Clib Leis
Gan Chlibeanna, Bí ar an gcéad duine leis an taifead seo a chlibeáil!
|
Míreanna Comhchosúla
-
Geometric theory of semilinear parabolic equations /
le: Henry, Dan.
Foilsithe: (1981) -
Well-posedness of parabolic difference equations /
le: Ashyralyev, A. 1955- .
Foilsithe: (1994) -
Optimal control of nonlinear parabolic systems : theory, algorithms, and applications /
le: Neittaanmäki, P.
Foilsithe: (1994) -
Spectral theory for random and nonautonomous parabolic equations and applications /
le: Mierczynski, Janusz.
Foilsithe: (2008) -
Mathematical problems from combustion theory /
le: Bebernes, Jerrold.
Foilsithe: (1989)