A Switching Criterion in Hybrid Quasi-Newton BFGS - Steepest Descent Direction
Two modified methods for unconstrained optimization are presented. The methods employ a hybrid descent direction strategy which uses a linear convex combination of quasi-Newton BFGS and steepest descent as search direction. A switching criterion is derived based on the First and Second order Kuhn-T...
Guardat en:
Autors principals: | Abu Hassan, Malik, Monsi, Mansor, Leong, Wah June |
---|---|
Format: | Article |
Idioma: | English English |
Publicat: |
Universiti Putra Malaysia Press
1999
|
Accés en línia: | http://psasir.upm.edu.my/id/eprint/3467/1/A_Switching_Criterion_in_Hybrid_Quasi-Newton.pdf |
Etiquetes: |
Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!
|
Ítems similars
-
Scaled memoryless BFGS preconditioned steepest descent method for very large-scale unconstrained optimization
per: Leong, Wah June, et al.
Publicat: (2009) -
Convergence of the Steepest Descent Method for Minimizing
Convex Functions
per: Abu Hassan, Malik, et al.
Publicat: (2002) -
BFGS method: a new search direction
per: Ibrahim, Mohd Asrul Hery, et al.
Publicat: (2014) -
Modified Quasi-Newton Methods For Large-Scale Unconstrained Optimization
per: Leong, Wah June
Publicat: (2003) -
Modified Quasi-Newton Methods For Large-Scale Unconstrained Optimization
per: Leong, Wah June
Publicat: (2003)