A Switching Criterion in Hybrid Quasi-Newton BFGS - Steepest Descent Direction
Two modified methods for unconstrained optimization are presented. The methods employ a hybrid descent direction strategy which uses a linear convex combination of quasi-Newton BFGS and steepest descent as search direction. A switching criterion is derived based on the First and Second order Kuhn-T...
Guardado en:
Autores Principales: | Abu Hassan, Malik, Monsi, Mansor, Leong, Wah June |
---|---|
Formato: | Artículo |
Lenguaje: | English English |
Publicado: |
Universiti Putra Malaysia Press
1999
|
Acceso en línea: | http://psasir.upm.edu.my/id/eprint/3467/1/A_Switching_Criterion_in_Hybrid_Quasi-Newton.pdf |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Scaled memoryless BFGS preconditioned steepest descent method for very large-scale unconstrained optimization
por: Leong, Wah June, et al.
Publicado: (2009) -
Convergence of the Steepest Descent Method for Minimizing
Convex Functions
por: Abu Hassan, Malik, et al.
Publicado: (2002) -
BFGS method: a new search direction
por: Ibrahim, Mohd Asrul Hery, et al.
Publicado: (2014) -
Modified Quasi-Newton Methods For Large-Scale Unconstrained Optimization
por: Leong, Wah June
Publicado: (2003) -
Modified Quasi-Newton Methods For Large-Scale Unconstrained Optimization
por: Leong, Wah June
Publicado: (2003)