A comparative study of evolving fuzzy grammar and machine learning techniques for text categorization
Several methods have been studied in text categorization and mostly are inspired by the statistical distribution features in the texts, such as the implementation of Machine Learning (ML) methods. However, there is no work available that investigates the performance of ML-based methods against the t...
Uloženo v:
| Hlavní autoři: | Mohd Sharef, Nurfadhlina, Martin, Trevor, Kasmiran, Khairul Azhar, Mustapha, Aida, Sulaiman, Md. Nasir, Azmi Murad, Masrah Azrifah |
|---|---|
| Médium: | Článek |
| Jazyk: | English |
| Vydáno: |
Springer-Verlag Berlin Heidelberg
2015
|
| On-line přístup: | http://psasir.upm.edu.my/id/eprint/43473/1/abstract00.pdf |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo otaguje tento záznam!
|
Podobné jednotky
-
Evolving fuzzy grammar for crime texts categorization
Autor: Mohd Sharef, Nurfadhlina, a další
Vydáno: (2015) -
Text fragment identification with evolving fuzzy grammars /
Autor: Nurfadhlina Mohd Sharef. -
Case studies with evolving fuzzy grammars
Autor: Martin, Trevor, a další
Vydáno: (2011) -
Examining text categorization methods for incidents analysis
Autor: Mohd Sharef, Nurfadhlina, a další
Vydáno: (2012) -
Modelling knowledge summarization by evolving fuzzy grammar
Autor: Mohd Sharef, Nurfadhlina, a další
Vydáno: (2013)
