The repeated procedure PRMZSS1 for estimating the polynomial zeros simultaneously
Our previous method that is PMZSS1 has a rate of convergence of at least eight. The aim of repeating the steps in PMZSS1 is to yield a better rate of convergence. The resulting method is called the repeated midpoint zoro PRMZSS1 where its rate of convergence is at least 7r +1 with r ≥ 1.The proof of...
Сохранить в:
Главные авторы: | Monsi, Mansor, Hassan, Nasruddin, Mohammad Rusli, Syaida Fadhilah |
---|---|
Формат: | Статья |
Язык: | English |
Опубликовано: |
Institute for Mathematical Research, Universiti Putra Malaysia
2016
|
Online-ссылка: | http://psasir.upm.edu.my/id/eprint/52332/1/11.%20Nasrudin%20n%20Mansor%20Monsi.pdf |
Метки: |
Добавить метку
Нет меток, Требуется 1-ая метка записи!
|
Схожие документы
-
The repeated procedure IRTSS1 for simultaneous inclusion of polynomial zeros
по: Rusli, Syaida Fadhilah, et al.
Опубликовано: (2015) -
The point procedure PRZSS1 for the simultaneous estimation of the zeros of a polynomial
по: Monsi, Mansor, et al.
Опубликовано: (2016) -
On the convergence of the point repeated symmetric single-step procedure for simultaneous estimation of polynomial zeros
по: Monsi, Mansor, et al.
Опубликовано: (2015) -
On modified symmetric single-step procedure for estimating polynomial zeros simultaneously
по: Monsi, Mansor, et al.
Опубликовано: (2014) -
On the efficiencies of the IMSS1 method for bounding polynomial zeros simultaneously
по: Mohammad Rusli, Syaida Fadhilah, et al.
Опубликовано: (2015)