A method of finding an integral solution to x3 + y3 = kz4

In this article, we proved that an integral solution (a, b, c) to the equation x3+y3 = kz4 is of the form a = rs, b = rt for any two integers s, t and c =  (r3u/d3)1/4 for some u with (k,r) = d where k divides a3 + b3 and r is a common factor of a and b.

Na minha lista:
Detalhes bibliográficos
Principais autores: Zahari, N. M., Sapar, Siti Hasana, Mohd Atan, Kamel Ariffin
Formato: Conference or Workshop Item
Idioma:English
Publicado em: American Institute of Physics 2010
Acesso em linha:http://psasir.upm.edu.my/id/eprint/57284/1/A%20method%20of%20finding%20an%20integral%20solution%20to%20x3%20%2B%20y3%20%3D%20kz4.pdf
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
Descrição
Resumo:In this article, we proved that an integral solution (a, b, c) to the equation x3+y3 = kz4 is of the form a = rs, b = rt for any two integers s, t and c =  (r3u/d3)1/4 for some u with (k,r) = d where k divides a3 + b3 and r is a common factor of a and b.