A method of finding an integral solution to x3 + y3 = kz4
In this article, we proved that an integral solution (a, b, c) to the equation x3+y3 = kz4 is of the form a = rs, b = rt for any two integers s, t and c = (r3u/d3)1/4 for some u with (k,r) = d where k divides a3 + b3 and r is a common factor of a and b.
Сохранить в:
Главные авторы: | Zahari, N. M., Sapar, Siti Hasana, Mohd Atan, Kamel Ariffin |
---|---|
Формат: | Conference or Workshop Item |
Язык: | English |
Опубликовано: |
American Institute of Physics
2010
|
Online-ссылка: | http://psasir.upm.edu.my/id/eprint/57284/1/A%20method%20of%20finding%20an%20integral%20solution%20to%20x3%20%2B%20y3%20%3D%20kz4.pdf |
Метки: |
Добавить метку
Нет меток, Требуется 1-ая метка записи!
|
Схожие документы
-
On the integral solutions of the diophantine equation x4 + y4 = z3
по: Ismail, S., et al.
Опубликовано: (2013) -
On the diophantine equation x² + 4.7ᵇ = y²ʳ
по: Yow, Kai Siong, et al.
Опубликовано: (2013) -
Kaedah Penyelesaian Integer kepada Persamaan Diofantus x³ⁿ + y³ⁿ = kz²ⁿ
по: Zahari, Nor Mazlin
Опубликовано: (2011) -
Kaedah Penyelesaian Integer kepada Persamaan Diofantus x³ⁿ + y³ⁿ = kz²ⁿ
по: Zahari, Nor Mazlin
Опубликовано: (2011) -
Kaedah penyelesaian integer kepada persamaan diofantus x³ⁿ + y³ⁿ = kz²ⁿ /
по: Nor Mazlin Zahari.