Characterization of COOH-Fe3O4/NCC-CTA+ on screen printed carbon electrode using field emission scanning electron microscope and energy dispersive x-ray for DNA biosensor

A novel DNA biosensing platform was designed by the functionalization of iron oxide (Fe3O4)with the carboxylic group via capping agent, mercaptopropionic acid (MPA) and conjugatedwith nanocellulose crystalline (NCC) surface modified with surfactant cetyltrimethylammoniumbromide (CTAB) to assist in t...

全面介紹

Saved in:
書目詳細資料
Main Authors: Che-Engku-Chik, Che Engku Noramalina, Yusof, Nor Azah, Abdullah, Jaafar, Othman, Siti Sarah, Wasoh @ Mohamad Isa, Helmi
格式: Article
語言:English
出版: Hibiscus Publisher 2017
在線閱讀:http://psasir.upm.edu.my/id/eprint/61095/1/Characterization%20of%20COOH-Fe3O4NCC-CTA%2B%20on%20screen%20printed%20carbon%20electrode%20using%20field%20emission%20scanning%20electron%20microscope%20and%20energy%20dispersive%20x-ray%20for%20DNA%20biosensor.pdf
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:A novel DNA biosensing platform was designed by the functionalization of iron oxide (Fe3O4)with the carboxylic group via capping agent, mercaptopropionic acid (MPA) and conjugatedwith nanocellulose crystalline (NCC) surface modified with surfactant cetyltrimethylammoniumbromide (CTAB) to assist in the DNA sensing capability. The product of nanocompositescompound was drop-casted on screen printed carbon electrode (SPCE). Characterization by fieldemission scanning electron microscope (FESEM) and energy dispersive X-Ray (EDX)spectroscopy showing that carboxyl functionalized iron oxide (COOH-Fe3O4) can be hybridizedwith NCC-CTA+ via electrostatic interaction.