Generalized regression neural network for prediction of peak outflow from dam breach
Several techniques have been used for estimation of peak outflow from breach when dam failure occurs. This study proposes using a generalized regression artificial neural network (GRNN) model as a new technique for peak outflow from the dam breach estimation and compare the results of GRNN with the...
Сохранить в:
| Главные авторы: | Sammen, Saad Shauket, Mohammad, Thamer Ahmad, Ghazali, Abdul Halim, Ahmed El-Shafie, Ahmed Hussein Kamel, Mohd Sidek, Lariyah |
|---|---|
| Формат: | Статья |
| Язык: | English |
| Опубликовано: |
Springer
2017
|
| Online-ссылка: | http://psasir.upm.edu.my/id/eprint/61947/1/Generalized%20regression%20neural%20network%20for%20prediction%20of%20peak%20outflow%20from%20dam%20breach.pdf |
| Метки: |
Добавить метку
Нет меток, Требуется 1-ая метка записи!
|
Схожие документы
-
An evaluation of existent methods for estimation of embankment dam breach parameters
по: Sh. Sammen, Saad, et al.
Опубликовано: (2017) -
Flood modeling of dam break with consideration of climate change
по: Sammen, Saad Shauket
Опубликовано: (2017) -
Flood modeling of dam break with consideration of climate change
по: Sammen, Saad Shauket
Опубликовано: (2017) -
Flood modeling of dam break with consideration of climate change /
по: Sammen, Saad Shauket.
Опубликовано: (2018) -
Dam breach parameters and their influence on flood hydrographs for Mosul dam
по: Basheer, Talal A., et al.
Опубликовано: (2017)
