Multi-spectral gradient method via variational technique under log-determinant norm for large-scale optimization
The spectral gradient method is popular due to the fact that only the gradient of the objective function is required at each iterate. Besides that, it is more efficient than the quasi-Newton method as the storage of second derivatives (Hessian) approximation are not required especially when the dime...
Tallennettuna:
Päätekijät: | Hong, Seng Sim, Leong, Wah June, Chen, Chuei Yee, Ibrahim, Siti Nur Iqmal |
---|---|
Aineistotyyppi: | Artikkeli |
Kieli: | English |
Julkaistu: |
Malaysian Mathematical Science Society
2017
|
Linkit: | http://psasir.upm.edu.my/id/eprint/62502/1/SPECTRAL.pdf |
Tagit: |
Lisää tagi
Ei tageja, Lisää ensimmäinen tagi!
|
Samankaltaisia teoksia
-
Spectral gradient methods via variational technique for large scale unconstrained optimization
Tekijä: Sim, Hong Seng
Julkaistu: (2017) -
Spectral gradient methods via variational technique for large scale unconstrained optimization /
Tekijä: Sim, Hong Seng.
Julkaistu: (2017) -
Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization
Tekijä: Hong, Seng Sim, et al.
Julkaistu: (2018) -
Gradient method with multiple damping for large-scale unconstrained optimization
Tekijä: Sim, Hong Seng, et al.
Julkaistu: (2019) -
Nonmonotone spectral gradient method based on memoryless symmetric rank-one update for large-scale unconstrained optimization
Tekijä: Hong, Seng Sim, et al.
Julkaistu: (2021)