Forecasting the Water Quality Class in a river basin using an artificial neural network with the softmax activation function
Classification of river water quality needs an efficient method to reduce energy, save time and decrease the risk of errors. This study describes the application of an Artificial Neural Network (ANN) with the softmax activation function to forecast the Water Quality Class (WQC) under the National Wa...
Enregistré dans:
| Auteurs principaux: | Azhar, Shah Christirani, Aris, Ahmad Zaharin, Yusoff, Mohd Kamil, Ramli, Mohammad Firuz |
|---|---|
| Format: | Article |
| Publié: |
Asian Research Publishing Network (ARPN)
2019
|
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Land use and river water quality relationships in the Muda River basin, Malaysia
par: Azhar, Shah Christirani
Publié: (2021) -
Water quality pattern recognition of the Muda River Basin, Malaysia
par: Azhar, Shah Christirani
Publié: (2017) -
Water quality pattern recognition of the Muda River Basin, Malaysia
par: Azhar, Shah Christirani
Publié: (2017) -
Water quality pattern recognition of the Muda River Basin, Malaysia /
par: Shah Christirani Azhar
Publié: (2017) -
Classification of river water quality using multivariate analysis
par: Azhar, Shah Christirani, et autres
Publié: (2015)
