Walsh Equiconvergence of Complex Interpolating Polynomials
Saved in:
| Main Authors: | , , |
|---|---|
| Corporate Author: | |
| Format: | Electronic eBook |
| Language: | English |
| Published: |
Dordrecht :
Springer Netherlands : Imprint: Springer,
2006.
|
| Edition: | 1st ed. 2006. |
| Series: | Springer Monographs in Mathematics,
|
| Subjects: | |
| Online Access: | https://doi.org/10.1007/978-1-4020-4175-4 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| LEADER | 03237nam a22005775i 4500 | ||
|---|---|---|---|
| 001 | 978-1-4020-4175-4 | ||
| 003 | DE-He213 | ||
| 005 | 20200629231132.0 | ||
| 007 | cr nn 008mamaa | ||
| 008 | 100301s2006 ne | s |||| 0|eng d | ||
| 020 | |a 9781402041754 |9 978-1-4020-4175-4 | ||
| 024 | 7 | |a 10.1007/978-1-4020-4175-4 |2 doi | |
| 050 | 4 | |a QA401-425 | |
| 072 | 7 | |a PBKJ |2 bicssc | |
| 072 | 7 | |a MAT034000 |2 bisacsh | |
| 072 | 7 | |a PBKJ |2 thema | |
| 082 | 0 | 4 | |a 511.4 |2 23 |
| 100 | 1 | |a Jakimovski, Amnon. |e author. |4 aut |4 http://id.loc.gov/vocabulary/relators/aut | |
| 245 | 1 | 0 | |a Walsh Equiconvergence of Complex Interpolating Polynomials |h [electronic resource] / |c by Amnon Jakimovski, Ambikeshwar Sharma, József Szabados. |
| 250 | |a 1st ed. 2006. | ||
| 264 | 1 | |a Dordrecht : |b Springer Netherlands : |b Imprint: Springer, |c 2006. | |
| 300 | |a XIV, 298 p. |b online resource. | ||
| 336 | |a text |b txt |2 rdacontent | ||
| 337 | |a computer |b c |2 rdamedia | ||
| 338 | |a online resource |b cr |2 rdacarrier | ||
| 347 | |a text file |b PDF |2 rda | ||
| 490 | 1 | |a Springer Monographs in Mathematics, |x 1439-7382 | |
| 505 | 0 | |a Lagrange Interpolation and Walsh Equiconvergence -- Hermite and Hermite-Birkhoff Interpolation and Walsh Equiconvergence -- A Generalization of the Taylor Series to Rational Functions and Walsh Equiconvergence -- Sharpness Results -- Converse Results -- Padé Approximation and Walsh Equiconvergence for Meromorphic Functions with ?–Poles -- Quantitative Results in the Equiconvergence of Approximation of Meromorphic Functions -- Equiconvergence for Functions Analytic in an Ellipse -- Walsh Equiconvergence Theorems for the Faber Series -- Equiconvergence on Lemniscates -- Walsh Equiconvergence and Equisummability. | |
| 650 | 0 | |a Approximation theory. | |
| 650 | 0 | |a Mathematical analysis. | |
| 650 | 0 | |a Analysis (Mathematics). | |
| 650 | 0 | |a Functions of complex variables. | |
| 650 | 0 | |a Sequences (Mathematics). | |
| 650 | 1 | 4 | |a Approximations and Expansions. |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12023 |
| 650 | 2 | 4 | |a Analysis. |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12007 |
| 650 | 2 | 4 | |a Functions of a Complex Variable. |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12074 |
| 650 | 2 | 4 | |a Sequences, Series, Summability. |0 https://scigraph.springernature.com/ontologies/product-market-codes/M1218X |
| 650 | 2 | 4 | |a Several Complex Variables and Analytic Spaces. |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12198 |
| 700 | 1 | |a Sharma, Ambikeshwar. |e author. |4 aut |4 http://id.loc.gov/vocabulary/relators/aut | |
| 700 | 1 | |a Szabados, József. |e author. |4 aut |4 http://id.loc.gov/vocabulary/relators/aut | |
| 710 | 2 | |a SpringerLink (Online service) | |
| 773 | 0 | |t Springer Nature eBook | |
| 776 | 0 | 8 | |i Printed edition: |z 9789048170609 |
| 776 | 0 | 8 | |i Printed edition: |z 9789048106233 |
| 776 | 0 | 8 | |i Printed edition: |z 9781402041747 |
| 830 | 0 | |a Springer Monographs in Mathematics, |x 1439-7382 | |
| 856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4020-4175-4 |
| 912 | |a ZDB-2-SMA | ||
| 912 | |a ZDB-2-SXMS | ||
| 950 | |a Mathematics and Statistics (SpringerNature-11649) | ||
| 950 | |a Mathematics and Statistics (R0) (SpringerNature-43713) | ||



