Maximum Dissipation Non-Equilibrium Thermodynamics and its Geometric Structure

Maximum Dissipation Non-Equilibrium Thermodynamics and its Geometric Structure explores the thermodynamics of non-equilibrium processes in materials. The book develops a general technique to construct nonlinear evolution equations describing non-equilibrium processes, while also developing a geometr...

Full description

Saved in:
Bibliographic Details
Main Author: Haslach Jr., Henry W. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: New York, NY : Springer New York : Imprint: Springer, 2011.
Edition:1st ed. 2011.
Subjects:
Online Access:https://doi.org/10.1007/978-1-4419-7765-6
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Maximum Dissipation Non-Equilibrium Thermodynamics and its Geometric Structure explores the thermodynamics of non-equilibrium processes in materials. The book develops a general technique to construct nonlinear evolution equations describing non-equilibrium processes, while also developing a geometric context for non-equilibrium thermodynamics. Solid materials are the main focus in this volume, but the construction is shown to also apply to fluids. This volume also:    •             Explains the theory behind a thermodynamically-consistent construction of non-linear evolution equations for non-equilibrium processes, based on supplementing the second law with a maximum dissipation criterion  •             Provides a geometric setting for non-equilibrium thermodynamics in differential topology and, in particular, contact structures that generalize Gibbs  •            Models processes that include thermoviscoelasticity, thermoviscoplasticity, thermoelectricity and dynamic fracture  •            Recovers several standard time-dependent constitutive models as maximum dissipation processes  •            Produces transport models that predict finite velocity of propagation  •            Emphasizes applications to the time-dependent modeling of soft biological tissue  Maximum Dissipation Non-Equilibrium Thermodynamics and its Geometric Structure will be valuable for researchers, engineers and graduate students in non-equilibrium thermodynamics and the mathematical modeling of material behavior.
Physical Description:XIV, 297 p. online resource.
ISBN:9781441977656