Electrical Properties of Graphite Nanoparticles in Silicone Flexible Oscillators and Electromechanical Sensing /

This thesis examines a novel class of flexible electronic material with great potential for use in the construction of stretchable amplifiers and memory elements.  Most remarkably the composite material produces spontaneous oscillations that increase in frequency when pressure is applied to it. In t...

Full description

Saved in:
Bibliographic Details
Main Author: Littlejohn, Samuel David. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edition:1st ed. 2014.
Series:Springer Theses, Recognizing Outstanding Ph.D. Research,
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-00741-0
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 04434nam a22006375i 4500
001 978-3-319-00741-0
003 DE-He213
005 20200706185206.0
007 cr nn 008mamaa
008 130829s2014 gw | s |||| 0|eng d
020 |a 9783319007410  |9 978-3-319-00741-0 
024 7 |a 10.1007/978-3-319-00741-0  |2 doi 
050 4 |a QC176.8.N35 
050 4 |a T174.7 
072 7 |a TBN  |2 bicssc 
072 7 |a SCI050000  |2 bisacsh 
072 7 |a TBN  |2 thema 
082 0 4 |a 620.5  |2 23 
100 1 |a Littlejohn, Samuel David.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Electrical Properties of Graphite Nanoparticles in Silicone  |h [electronic resource] :  |b Flexible Oscillators and Electromechanical Sensing /  |c by Samuel David Littlejohn. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XV, 166 p. 92 illus., 82 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
505 0 |a Background Theory -- Fabrication and Measurement -- Tunneling Negative Differential Resistance in a GSC -- Electromechanical Properties and Sensing -- Electronic Amplification in the NDR Region -- Conclusions and Future Work -- Publications -- Procedure for Imprint Lithography Stamp -- ICP-RIE Recipe for Deep Silicon Etch -- Synthesis of Silane Functionalized Naphthalenediimide -- Calculation of Cut-Off Frequency. 
520 |a This thesis examines a novel class of flexible electronic material with great potential for use in the construction of stretchable amplifiers and memory elements.  Most remarkably the composite material produces spontaneous oscillations that increase in frequency when pressure is applied to it. In this way, the material mimics the excitatory response of pressure-sensing neurons in the human skin. The composites, formed of silicone and graphitic nanoparticles, were prepared in several allotropic forms and functionalized with naphthalene diimide molecules. A systematic study is presented of the negative differential resistance (NDR) region of the current-voltage curves, which is responsible for the material’s active properties. This study was conducted as a function of temperature, graphite filling fraction, scaling to reveal the break-up of the samples into electric field domains at the onset of the NDR region, and an electric-field induced metal-insulator transition in graphite nanoparticles. The effect of molecular functionalization on the miscibility threshold and the current-voltage curves is demonstrated. Room-temperature and low-temperature measurements were performed on these composite films under strains using a remote-controlled, custom-made step motor bench. 
650 0 |a Nanoscale science. 
650 0 |a Nanoscience. 
650 0 |a Nanostructures. 
650 0 |a Optical materials. 
650 0 |a Electronic materials. 
650 0 |a Materials—Surfaces. 
650 0 |a Thin films. 
650 0 |a Surfaces (Physics). 
650 0 |a Interfaces (Physical sciences). 
650 0 |a Nanotechnology. 
650 1 4 |a Nanoscale Science and Technology.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/P25140 
650 2 4 |a Optical and Electronic Materials.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/Z12000 
650 2 4 |a Surfaces and Interfaces, Thin Films.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/Z19000 
650 2 4 |a Surface and Interface Science, Thin Films.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/P25160 
650 2 4 |a Nanotechnology.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/Z14000 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319007427 
776 0 8 |i Printed edition:  |z 9783319007403 
776 0 8 |i Printed edition:  |z 9783319346175 
830 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
856 4 0 |u https://doi.org/10.1007/978-3-319-00741-0 
912 |a ZDB-2-PHA 
912 |a ZDB-2-SXP 
950 |a Physics and Astronomy (SpringerNature-11651) 
950 |a Physics and Astronomy (R0) (SpringerNature-43715)