Infinity Properads and Infinity Wheeled Properads
The topic of this book sits at the interface of the theory of higher categories (in the guise of (∞,1)-categories) and the theory of properads. Properads are devices more general than operads, and enable one to encode bialgebraic, rather than just (co)algebraic, structures. The text extends both t...
Uloženo v:
| Hlavní autoři: | , , |
|---|---|
| Korporativní autor: | |
| Médium: | Elektronický zdroj E-kniha |
| Jazyk: | English |
| Vydáno: |
Cham :
Springer International Publishing : Imprint: Springer,
2015.
|
| Vydání: | 1st ed. 2015. |
| Edice: | Lecture Notes in Mathematics,
2147 |
| Témata: | |
| On-line přístup: | https://doi.org/10.1007/978-3-319-20547-2 |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo otaguje tento záznam!
|
Obsah:
- Introduction
- Graphs
- Properads
- Symmetric Monoidal Closed Structure on Properads
- Graphical Properads
- Properadic Graphical Category
- Properadic Graphical Sets and Infinity Properads
- Fundamental Properads of Infinity Properads
- Wheeled Properads and Graphical Wheeled Properads
- Infinity Wheeled Properads
- What's Next?.



