Infinity Properads and Infinity Wheeled Properads

The topic of this book sits at the interface of the theory of higher categories (in the guise of (∞,1)-categories) and the theory of properads. Properads are devices more general than operads, and enable one to encode bialgebraic, rather than just (co)algebraic, structures.   The text extends both t...

Disgrifiad llawn

Wedi'i Gadw mewn:
Manylion Llyfryddiaeth
Prif Awduron: Hackney, Philip. (Awdur, http://id.loc.gov/vocabulary/relators/aut), Robertson, Marcy. (http://id.loc.gov/vocabulary/relators/aut), Yau, Donald. (http://id.loc.gov/vocabulary/relators/aut)
Awdur Corfforaethol: SpringerLink (Online service)
Fformat: Electronig eLyfr
Iaith:English
Cyhoeddwyd: Cham : Springer International Publishing : Imprint: Springer, 2015.
Rhifyn:1st ed. 2015.
Cyfres:Lecture Notes in Mathematics, 2147
Pynciau:
Mynediad Ar-lein:https://doi.org/10.1007/978-3-319-20547-2
Tagiau: Ychwanegu Tag
Dim Tagiau, Byddwch y cyntaf i dagio'r cofnod hwn!
Tabl Cynhwysion:
  • Introduction
  • Graphs
  • Properads
  • Symmetric Monoidal Closed Structure on Properads
  • Graphical Properads
  • Properadic Graphical Category
  • Properadic Graphical Sets and Infinity Properads
  • Fundamental Properads of Infinity Properads
  • Wheeled Properads and Graphical Wheeled Properads
  • Infinity Wheeled Properads
  • What's Next?.