Infinity Properads and Infinity Wheeled Properads
The topic of this book sits at the interface of the theory of higher categories (in the guise of (∞,1)-categories) and the theory of properads. Properads are devices more general than operads, and enable one to encode bialgebraic, rather than just (co)algebraic, structures. The text extends both t...
Tallennettuna:
| Päätekijät: | , , |
|---|---|
| Yhteisötekijä: | |
| Aineistotyyppi: | Elektroninen E-kirja |
| Kieli: | English |
| Julkaistu: |
Cham :
Springer International Publishing : Imprint: Springer,
2015.
|
| Painos: | 1st ed. 2015. |
| Sarja: | Lecture Notes in Mathematics,
2147 |
| Aiheet: | |
| Linkit: | https://doi.org/10.1007/978-3-319-20547-2 |
| Tagit: |
Lisää tagi
Ei tageja, Lisää ensimmäinen tagi!
|
Sisällysluettelo:
- Introduction
- Graphs
- Properads
- Symmetric Monoidal Closed Structure on Properads
- Graphical Properads
- Properadic Graphical Category
- Properadic Graphical Sets and Infinity Properads
- Fundamental Properads of Infinity Properads
- Wheeled Properads and Graphical Wheeled Properads
- Infinity Wheeled Properads
- What's Next?.



