Infinity Properads and Infinity Wheeled Properads

The topic of this book sits at the interface of the theory of higher categories (in the guise of (∞,1)-categories) and the theory of properads. Properads are devices more general than operads, and enable one to encode bialgebraic, rather than just (co)algebraic, structures.   The text extends both t...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Hackney, Philip. (Auteur, http://id.loc.gov/vocabulary/relators/aut), Robertson, Marcy. (http://id.loc.gov/vocabulary/relators/aut), Yau, Donald. (http://id.loc.gov/vocabulary/relators/aut)
Collectivité auteur: SpringerLink (Online service)
Format: Électronique eBook
Langue:English
Publié: Cham : Springer International Publishing : Imprint: Springer, 2015.
Édition:1st ed. 2015.
Collection:Lecture Notes in Mathematics, 2147
Sujets:
Accès en ligne:https://doi.org/10.1007/978-3-319-20547-2
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Table des matières:
  • Introduction
  • Graphs
  • Properads
  • Symmetric Monoidal Closed Structure on Properads
  • Graphical Properads
  • Properadic Graphical Category
  • Properadic Graphical Sets and Infinity Properads
  • Fundamental Properads of Infinity Properads
  • Wheeled Properads and Graphical Wheeled Properads
  • Infinity Wheeled Properads
  • What's Next?.