Infinity Properads and Infinity Wheeled Properads
The topic of this book sits at the interface of the theory of higher categories (in the guise of (∞,1)-categories) and the theory of properads. Properads are devices more general than operads, and enable one to encode bialgebraic, rather than just (co)algebraic, structures. The text extends both t...
Saved in:
| Main Authors: | , , |
|---|---|
| Údar Corparáideach: | |
| Formáid: | Leictreonach ríomhLeabhar |
| Teanga: | English |
| Foilsithe: |
Cham :
Springer International Publishing : Imprint: Springer,
2015.
|
| Eagrán: | 1st ed. 2015. |
| Sraith: | Lecture Notes in Mathematics,
2147 |
| Ábhair: | |
| Rochtain Ar Líne: | https://doi.org/10.1007/978-3-319-20547-2 |
| Clibeanna: |
Cuir Clib Leis
Gan Chlibeanna, Bí ar an gcéad duine leis an taifead seo a chlibeáil!
|
Clár Ábhair:
- Introduction
- Graphs
- Properads
- Symmetric Monoidal Closed Structure on Properads
- Graphical Properads
- Properadic Graphical Category
- Properadic Graphical Sets and Infinity Properads
- Fundamental Properads of Infinity Properads
- Wheeled Properads and Graphical Wheeled Properads
- Infinity Wheeled Properads
- What's Next?.



