Infinity Properads and Infinity Wheeled Properads

The topic of this book sits at the interface of the theory of higher categories (in the guise of (∞,1)-categories) and the theory of properads. Properads are devices more general than operads, and enable one to encode bialgebraic, rather than just (co)algebraic, structures.   The text extends both t...

Cur síos iomlán

Saved in:
Sonraí Bibleagrafaíochta
Main Authors: Hackney, Philip. (Údar, http://id.loc.gov/vocabulary/relators/aut), Robertson, Marcy. (http://id.loc.gov/vocabulary/relators/aut), Yau, Donald. (http://id.loc.gov/vocabulary/relators/aut)
Údar Corparáideach: SpringerLink (Online service)
Formáid: Leictreonach ríomhLeabhar
Teanga:English
Foilsithe: Cham : Springer International Publishing : Imprint: Springer, 2015.
Eagrán:1st ed. 2015.
Sraith:Lecture Notes in Mathematics, 2147
Ábhair:
Rochtain Ar Líne:https://doi.org/10.1007/978-3-319-20547-2
Clibeanna: Cuir Clib Leis
Gan Chlibeanna, Bí ar an gcéad duine leis an taifead seo a chlibeáil!
Clár Ábhair:
  • Introduction
  • Graphs
  • Properads
  • Symmetric Monoidal Closed Structure on Properads
  • Graphical Properads
  • Properadic Graphical Category
  • Properadic Graphical Sets and Infinity Properads
  • Fundamental Properads of Infinity Properads
  • Wheeled Properads and Graphical Wheeled Properads
  • Infinity Wheeled Properads
  • What's Next?.