Infinity Properads and Infinity Wheeled Properads

The topic of this book sits at the interface of the theory of higher categories (in the guise of (∞,1)-categories) and the theory of properads. Properads are devices more general than operads, and enable one to encode bialgebraic, rather than just (co)algebraic, structures.   The text extends both t...

Popoln opis

Shranjeno v:
Bibliografske podrobnosti
Main Authors: Hackney, Philip. (Author, http://id.loc.gov/vocabulary/relators/aut), Robertson, Marcy. (http://id.loc.gov/vocabulary/relators/aut), Yau, Donald. (http://id.loc.gov/vocabulary/relators/aut)
Korporativna značnica: SpringerLink (Online service)
Format: Elektronski eKnjiga
Jezik:English
Izdano: Cham : Springer International Publishing : Imprint: Springer, 2015.
Izdaja:1st ed. 2015.
Serija:Lecture Notes in Mathematics, 2147
Teme:
Online dostop:https://doi.org/10.1007/978-3-319-20547-2
Oznake: Označite
Brez oznak, prvi označite!
Kazalo:
  • Introduction
  • Graphs
  • Properads
  • Symmetric Monoidal Closed Structure on Properads
  • Graphical Properads
  • Properadic Graphical Category
  • Properadic Graphical Sets and Infinity Properads
  • Fundamental Properads of Infinity Properads
  • Wheeled Properads and Graphical Wheeled Properads
  • Infinity Wheeled Properads
  • What's Next?.