Infinity Properads and Infinity Wheeled Properads
The topic of this book sits at the interface of the theory of higher categories (in the guise of (∞,1)-categories) and the theory of properads. Properads are devices more general than operads, and enable one to encode bialgebraic, rather than just (co)algebraic, structures. The text extends both t...
Saved in:
| Main Authors: | , , |
|---|---|
| 企业作者: | |
| 格式: | 电子 电子书 |
| 语言: | English |
| 出版: |
Cham :
Springer International Publishing : Imprint: Springer,
2015.
|
| 版: | 1st ed. 2015. |
| 丛编: | Lecture Notes in Mathematics,
2147 |
| 主题: | |
| 在线阅读: | https://doi.org/10.1007/978-3-319-20547-2 |
| 标签: |
添加标签
没有标签, 成为第一个标记此记录!
|
书本目录:
- Introduction
- Graphs
- Properads
- Symmetric Monoidal Closed Structure on Properads
- Graphical Properads
- Properadic Graphical Category
- Properadic Graphical Sets and Infinity Properads
- Fundamental Properads of Infinity Properads
- Wheeled Properads and Graphical Wheeled Properads
- Infinity Wheeled Properads
- What's Next?.



